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Abstract
The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative
refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a
plane polarized wave propagating through this system can change its polarization by 90◦ in less
than a wavelength. Such chirality is at least 100 times greater than previous structures have
achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and
analytical results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that the electromagnetic response of
conventional materials is dependent on their molecular
composition and usually have both/either the electric
permittivity (ε) and/or the magnetic permeability (μ) positive.
Since the structure and composition of molecules and
atoms are rather restrictive, the electromagnetic properties
of conventional media are limited. In the past few
years, new artificial media, called metamaterials, have been
developed that are capable of overcoming these restrictions.
Metamaterials’ subunits are much smaller than the wavelength
of incident radiation, such that an incident wave sees a
homogeneous medium and not the geometry of the subunits.
Therefore, the subunit of a metamaterial can be specifically
designed to manufacture media with advantageous and novel
electromagnetic properties, such as negative refraction and
perfect lensing.

Although negative refraction is a property not found in
nature, Veselago, in 1968 [1], by considering causality and
dispersion for real media and the fact that from Maxwell’s
equations the refractive index (n) is given by n = √

ε(ω)μ(ω),
pointed out that materials with Re(ε(ω)) and Re(μ(ω))

simultaneously negative, exhibit a negative refractive index.
However, considering that the imaginary parts of ε(ω) and
μ(ω) are restricted to be positive and related to the real parts
by the Kramer–Kronig relations, the refractive index can be

rewritten as:

n =
{ +√

ε(ω)μ(ω) for Re(ε) > 0 and Re(μ) > 0

−√
ε(ω)μ(ω) for Re(ε) < 0 and Re(μ < 0).

(1)
The most well-known negatively-refractive metamaterial is
constructed by combining an artificial plasma (such as a
wire mesh metamaterial [2–4]), and a magnetic resonator
(for example split ring resonators [5]), providing the negative
permittivity (Re(ε) < 0) and negative permeability (Re(μ) <

0) respectively. These metamaterials are usually called doubly
negative metamaterials, since two different resonant structures
are combined to provide a negative refractive index over
a frequency range, as shown in figure 1. However, their
applications are considerably limited due to resonance losses
and the difficulty of manufacturing an artificial magnetic
structure for high frequencies. Also, their band structure is not
continuous at the transition from the negative to positive band
(figure 1) [6].

Based on the above observations, several alternative
metamaterial structures were introduced in the literature that
also support negative refraction and avoid some of these
problems. Chiral media are an example, since they exhibit
a backward wave without requiring both ε and μ to be
negative [6–10]. Generally a structure is said to be chiral if it is
not identical to its mirror image and chirality in a medium leads
to the macroscopic rotation of the wave polarization. Hence,
the electromagnetic fields in a chiral medium can be written
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Figure 1. The band structure of a typical doubly negative
metamaterial, consisted from a wire mesh and split ring resonators,
where ω1 is the resonant frequency of the split ring resonators, ω2 is
the magnetic plasma frequency of the split ring resonators and ω3 is
the plasma frequency of the wire mesh.

as [6]: [
D
B

]
=

[
χE E χE H

χH E χH H

] [
E
H

]
(2)

where D is the electric displacement vector, E the electric
field intensity, B is the magnetic induction field and H the
magnetic field intensity. The parameters χE E and χH H are
the electric permittivity and magnetic permeability of the
medium, respectively, and χE H and χH E are the chirality
parameters. As described in [6], a dipole medium (electric
or magnetic) exhibits two degenerate modes and a stop-band
for frequencies where ε or μ is negative. Now, if chiral
inclusions are introduced to this medium, the degenerate
modes split, resulting in a negative band for one of the wave
polarizations [6]. Therefore, chiral metamaterials can achieve
negative refraction with a continuous transition between the
negative and the positive bands, requiring just one resonant
structure. Here, it is worth mentioning that chiral inclusions
of aligned handedness ensure macroscopically rotatory power.
If half of them have opposite handedness, the rotatory power
disappears [11]. Examples of chiral metamaterials are helical-
shaped conducting wires [10, 12] and chiral Swiss rolls [6]. In
this paper the chiral Swiss roll metamaterial is discussed and
is shown that it exhibits an enormous chirality compared with
other structures in literature.

Initially let us consider briefly the simple case of the non-
chiral Swiss roll metamaterial, shown in figure 2(a). A non-
chiral Swiss roll resonator is made of a conducting sheet,
arranged in a spiral shape and it demonstrates a macroscopic
magnetic behaviour [5]. For a magnetic field applied along
the rod, currents are induced on the spiral conducting sheet,
which in their turn give rise to an electromotive force (emf)
opposing the applied magnetic field. Therefore, it appears
macroscopically that ‘magnetic monopoles’ are flowing up and
down the rod [5, 13], creating a magnetic equivalent of the
parallel-wire structure. The effective magnetic permeability of
the Swiss roll metamaterial (with the rods aligned with z-axes)

is given by [5]:

μz = 1 − Fω2

ω2 − ω2
0 + i�ω

(3)

where F = π R2/a2 is the filling factor and the resonant
frequency is given by:

ω2
0 = dc2

0

2π2 R3εd(N − 1)
(4)

where R is the outer radius, a the lattice constant, εd is the
dielectric permittivity of the material in the gap, d is the
gap between the conducting sheets, � = 2ρ/[μ0 R(N − 1)]
accounts for the resistivity losses of the conducting material [5]
and ρ is the resistance of the roll per unit area. The
magnetic permeability is zero at ωmp and the ‘magnetic’
plasma frequency is given by [5]:

ω2
mp = dc2

0

(1 − F)2π2 R3εd(N − 1)
= ω2

0

(1 − F)
. (5)

A non-chiral Swiss roll metamaterial, with the rods arranged
in a square lattice and all aligned with the z-axes has a band
structure given by [14, 15]:

ω = c0

√
k2

x

εyμz
+ k2

z

εyμx
(6)

and plotted in figure 2(b) for kx -propagation (i.e. ky = kz =
0) [16, 14]. Note that there is stop-band for frequencies where
μz is negative (ω0 < ω < ωmp). In this paper, we discuss the
chiral Swiss roll structure by investigating its electromagnetic
and chiral behaviour, both numerically and analytically. Also,
the band structure of the chiral metamaterial is calculated
numerically and compared with previous analytical work
in [6]. Finally the electromagnetic and chiral parameters are
derived and compared with other chiral structures in recent
literature.

2. Electromagnetic and chirality parameters

A chiral Swiss roll can be constructed by winding an insulated
conducting sheet (of the shape shown in figure 3(a)), around a
cylindrical mandrel, creating an overlapping helix. Each layer
of the conducting sheet is separated by distance d , filled with
air or a dielectric material of εd and N is the number of turns
measured at a cross section. The external radius of the rod
is R and the structure has periodicity p = 2π R tan θ , width
w = 2π RN sin θ and the length of the conducting foil is l =
Nπ R sin 2θ . The structure has a magnetic resonance, arising
in the same way as for the non-chiral Swiss roll, described
above. However, its helical shape provides the chirality of the
structure [6].

In order to derive the electromagnetic and chirality
parameters of the chiral Swiss roll, let us consider uniform
fields Hz and Ez , applied along a right-handed chiral Swiss
roll. The Hz-field induces a current flowing in the x–y plane.
Ez creates charge accumulation at the edges of the foil, since

2
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(a) (b)

Figure 2. (a) A non-chiral Swiss roll, where R is the outer radius, d is the gap between the conducting sheets. (b) The analytical prediction
for the band structure of a Swiss roll for kx propagation. A stop-band is expected for frequencies where μz is negative (i.e. ω0 < ω < ωmp).

(a)

(b)

Figure 3. (a) The (unfolded) conducting sheet used to create a
right-handed chiral Swiss roll. When wrapped around a cylindrical
mandrel, a helical conducting structure is created. The enlarged part
is the unfolded section of the foil that when wrapped gives the unit
cell of a chiral Swiss roll. (b) The cross section of a chiral Swiss roll,
where R is the radius and d the gap between the conducting sheet.

it is not continuous (along the z-axis), giving rise to an electric
field perpendicular to the edges of the conducting sheet (shown
in figure 4(a) resolved to x- and z-components). Also, keep in
mind that the edges of the conducting foil are exposed either
outside or inside the rod and are shown in figure 4 with dashed
lines.

Assuming that there are no local field effects, the cylinder
has rotational symmetry and the current varies only across the

(a) (b)

Figure 4. The periodic element of a chiral Swiss roll unwrapped.
The dotted lines on the unfolded sheet show the exposed part of the
conducting foil to either the inside or outside of the chiral Swiss roll.
(a) The electric field due to charge accumulation at the edges of the
conducting sheet, resolved in x- and z-components. (b) The current
J0 is perpendicular to the edges of the foil and is dependent on
charge accumulation at the edges.

width of the conducting sheet. Also, since the foil within the
dashed lines is not exposed to either the outside or inside of the
chiral Swiss roll, J0 is constant in magnitude and direction,
and can be written as: J0 = J0x sin θ + J0z cos θ , where
J0 is the current perpendicular to the edges of the unfolded
conducting sheet (figure 4(b)). Furthermore, if we assume a
small gap between the conducting sheet (i.e. R � d) and a
large number of turns (N), a large overlap of the conducting
sheet is ensured. Now by considering the magnetic field along
the z-axis (i.e. Hz), the potential difference and the charging
of the capacitor between the inner and outer exposed foil and
finally the emf arising from the induced current, the inverse
electromagnetic and chirality parameters can be obtained (for
a detailed derivation see appendix A):

[χ−1]H H = 1

(1 − F)

(
ω2 − ω2

0 + i�ω

ω2 − ω2
mp + i�ω/(1 − F)

)
(7)

[χ−1]E E = G

(
ω2 + iω�/(1 − F)

ω2 − ω2
p + iω�/(1 − F)

)
(8)
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(a) (b)

Figure 5. For Swiss rolls of N = 2, R = 1 mm, l = 5 mm, x = 0.05 mm, d = 0.35 mm, θ = 21, 7◦ and a = 5 mm. (a) The magnetic
permeability (χH H ) is plotted with the red line and the electric permittivity tensor (χE E ) with the blue line. (b) The chirality terms (κE H and
κH E ), which are equal and opposite (i.e. κE H = −κH E ).

[χ−1]H E/ε0 = − iR

2L tan θ

(
ω2

mpω

ω2 − ω2
mp + i�ω/(1 − F)

)

= [κ−1]H E (9)

[χ−1]E H/μ0 = iR

2L tan θ

(
ωω2

mp

ω2 − ω2
mp + i�ω/(1 − F)

)

= [κ−1]E H (10)

where χ−1 are the elements from the inverse tensor of (2), χE E

the electric permittivity, χH H the magnetic permeability, χE H

and χH E the chirality parameters (note that F = π R2/a2 is the
filling factor, [κ−1]E H = −[κ−1]H E). Additionally, ω is the
frequency, R, θ and d are the dimensions of the chiral Swiss
roll as defined in figure 3(a), a the lattice constant and G is a
constant given by:

G = a2d

L(8π3 R3(N − 1)L tan2 θ + a2d)
(11)

and

L = 1 − ω
iεdε0a2ρ

2π R
. (12)

Furthermore,

� = − 2ρ

μ0 R
(13)

accounts for the resistivity losses in the conducting sheet and
ρ is the resistance of the roll per unit area. Note that the
resistivity losses for microwave frequencies are negligible,
compared to the lossy character of the dielectric in the gap.
The resonant frequencies ω0, ωmp and ωp are the given by:

ω0 = c0

√
4π Ld tan2 θ

εd(8(N − 1)Lπ3 R3 tan2 θ + a2d)
. (14)

The magnetic and electric plasma frequencies take the same
values and are given by:

ωmp = ω0√
1 − F

= ωp. (15)

The electromagnetic parameters are plotted in figure 5 for
a chiral Swiss roll with dimensions N = 2, R = 1 mm,

l = 5 mm, d = 0.35 mm, θ = 21, 7◦, a = 5 mm and thickness
of conducting sheet x = 0.05 mm. Note that both χE E and
χH H are zero at the same frequency, since ωmp = ωp and both
χE E and χH H are negative for frequencies ω0 < ω < ωmp

as expected. Also, the chirality terms take infinite values for
ω → ω0 and zero value for ωmp. Finally, note that both χH H

in (7) and μz in (3) obey the Lorentz model, since the magnetic
behaviour of both structures arises from the same mechanism.

3. Band structure

A 2D chiral medium can be constructed by alternating the
alignment of neighbouring layers of chiral Swiss rolls, as
shown in figure 6(a). If the Swiss rolls are aligned with the
y- and z-axes, then, the fields are given by (2), for propagation
along the x-axes (i.e. ky = kz = 0). Also, now (7)–(10), are
valid for electric and magnetic fields along both the y- ans z-
axes. Using, Maxwell’s equations and helical polarization for
the electric and magnetic fields, the dispersion equations can
be derived (explained in greater detail in [6]):

ω+± = c0k+±
(

i[κ−1]E H/c0 ±
√

[χ−1]E E [χ−1]H H

)
(16)

ω−± = c0k−±
(
−i[κ−1]E H/c0 ±

√
[χ−1]E E [χ−1]H H

)
(17)

for the positive and negative polarizations respectively and
where [κ−1]E H , [χ−1]E E and [χ−1]H H are the inverse
chirality, electric and magnetic parameters respectively.

Using (7)–(10), the band structure for a 2D chiral Swiss
roll medium can be plotted, and is shown in figures 6(b)
and (c) with full lines, for the real and imaginary part
respectively. As it was expected, the degeneracy of the modes
no longer holds, since the chirality splits the two modes and
a negative band for one-wave polarization has emerged for
frequencies ω0 < ω < ωmp. Also, for frequencies ω <

ω0, there is a stop-band as expected, since χE E is negative
and χH H is positive. Finally, the wavevector (i.e. 
k) at
which the frequency takes the minimum value is dependent
on the resonant frequency (ω0) and the inverse chirality at the
resonant frequency ([κ−1]E H (ω0)) and is given by:


k = ± ω0

Im([κ−1]E H (ω0))
. (18)

4
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(a)

(b) (c)

Figure 6. (a) Chiral Swiss rolls are placed along the y- and z-axes, creating a 2D chiral Swiss roll metamaterial. (b) The analytic prediction
for the band structure of a 2D chiral Swiss roll metamaterial is shown with full lines and the numerical results with dots for dimensions N = 2,
R = 1 mm, l = 5 mm, x = 0.05 mm, d = 0.35 mm, θ = 21, 7◦ and a = 5 mm. (c) The analytic prediction for the imaginary wavevector.

(a) (b)

Figure 7. The band structure (a) real part, (b) imaginary part of 2D Swiss roll metamaterial for various values of σ and with dimensions
N = 2, R = 1 mm, l = 5 mm, x = 0.05 mm, d = 0.35 mm, θ = 21, 7◦ and a = 5 mm. Red solid line: σ = 0-vacuum, green dashed line:
σ = 0.01 and blue dotted line: σ = 0.02.

Using CST Microwave studio, the band structure of a
2D chiral Swiss roll medium (as shown in figure 6(a)), with
dimensions N = 2, R = 1 mm, l = 5 mm, x =
0.05 mm, d = 0.35 mm, θ = 21, 7◦ and a = 5 mm was
calculated and is plotted in figure 6(b) (dots) with the analytical
dispersion equations (full lines) shown in (16) and (17). The
two band structures have a similar shape, with a negative
band corresponding to one-wave polarization. The agreement
between the analytical and the numerical calculations for the
resonant frequencies is approximately ∼80% and for 
k is
∼84%. Considering that the analytical prediction for this
structure was derived assuming that N is large, R � d and
an infinitely thin conducting sheet (which are not precisely
valid for the chiral Swiss roll considered numerically), the
agreement between the analytical and numerical results is
significant.

Losses in Swiss roll metamaterials are mainly due to the
dielectric material in the gap. In order to take them into

account, just consider a complex εd given by:

εd = ε′ + iε′′ = ε′ + i
σ

ωε0
(19)

where σ is the conductivity of the dielectric. In figure 7, the
band structure is plotted for various values of σ . For large
enough σ the modes do not meet at 
k. In figure 8, the band
structure of a 2D Swiss roll metamaterials is plotted which has
vacuum in the gap (red solid line) and a dielectric materials of
σ = 0.0167 (blue dotted line). The bands slightly shift towards
lower frequencies. Resistivity losses of metals for GHz and
MHz frequencies that Swiss rolls operate, are negligibly small
(i.e. for copper resistivity ∼1.7 × 10−8). Figure 9, the band
structure for various metals with difference resistivity. It is
clear that resistance losses are insignificant at this frequency
range.

Swiss rolls are most commonly used in the MHz
frequency range [17, 14]. MHz-Swiss rolls are complex

5
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Figure 8. The band structure of Swiss rolls with dimensions N = 2,
R = 1 mm, l = 5 mm, x = 0.05 mm, d = 0.35 mm, θ = 21, 7◦ and
a = 5 mm. Red solid line for vacuum (i.e. σ = 0) between the
conducting sheets and blue dotted line of σ = 0.0167.

structures, with extremely fine details demanding an enormous
computational time in order to be modelled with today’s
computer capabilities. Therefore, a structure with smaller
N , bigger d and θ was simulated in order to investigate the
structure numerically. Nevertheless, since there is a good
agreement for a structure with resonance in the GHz range
(where some assumptions taken analytically are not valid
numerically) it is expected that the analytical prediction and
numerical calculations to coincide for lower frequencies.

A significant advantage of chiral Swiss rolls, is the fact
that their resonant frequency can easily be tuned over a wide
range of frequencies (from few MHz to tens of GHz), by
simply changing the packing, the radius or the length of the
conducting sheet, or the dielectric constant of the material
in the gap. Also, chiral Swiss rolls do not require dipole
inclusions in order to show a negative band, as the helical
conducting wire structure does [10], since their spiral shape
ensures a magnetic resonance for waves with a magnetic field
parallel to the rod.

Finally, probably the most important advantage of chiral
Swiss rolls is the fact that they exhibit extreme chirality

compared with other chiral structures discussed in the
literature [10, 12], by a factor of at least two orders of
magnitude. The measure of this efficiency is their cross
section, which is typically (1/100)th to (1/1000)th of the
wavelength. Other structures proposed for chiral metamaterials
such as the helical structures require a much larger cross
section to achieve any significant activity. This is also the
main reason that for chiral Swiss rolls a backward wave can
be observed even for GHz frequencies, whereas for loop wires
or helical wires, it appears for a less broad frequency range
or is lost in the stop-band due to sharp resonances [10].
Furthermore, this structure, in addition to magnetic resonance
imaging (MRI) applications that are well known [17], is
ideal for polarization rotation/selection antenna applications.
The extreme chirality of Swiss rolls ensures a tremendous
enhancement of the efficiency for these types of antennas,
where a linear wave needs to be transformed to a circularly
polarized wave [12].

4. Conclusion

The prospect of achieving negative refraction using chiral
Swiss roll metamaterials is discussed in this paper, where
it was found that Swiss rolls exhibit at least 100 times
more chirality than other structures previously reported in
literature, and therefore ensuring a broader backward wave. A
detailed analytical discussion is reported in this paper for the
electromagnetic, chiral parameters, and the band structure of
a 2D chiral Swiss roll medium, where a significant agreement
with numerical calculations was found. Finally, chiral Swiss
rolls can be used in antenna applications based on polarization
rotation/selection, and due to their extreme chirality to enhance
efficiency.

Appendix. Electromagnetic and chirality parameters
of Swiss rolls

Consider uniform fields Hz and Ez applied along a right-
handed chiral Swiss roll and assume that:

(i) there are no local field effects giving to the cylinder a
rotational symmetry and the current varies only across

(a) (b)

Figure 9. The band structure (a) real part, (b) imaginary part of a 2D Swiss roll metamaterial with dimensions N = 2, R = 1 mm, l = 5 mm,
x = 0.05 mm, d = 0.35 mm, θ = 21, 7◦ and a = 5 mm. Red solid line: Copper–Cu with resistivity = (1.67 × 10−8) � m, green dashed
lines: aluminium with resistivity = (2.74 × 10−8) � m and blue dotted line: Iron–Fe = (9.8 × 10−8) � m which is close to the conductivity
of germanium.

6
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the width of the conducting sheet. Consequently, only J0

(figure 4(b)) is driven by emf ;
(ii) the foil within the dotted lines is not exposed to either the

outside or inside of the chiral Swiss roll, and therefore it
can be assumed that there is no charge accumulation in this
area, and current J0 is constant in magnitude and direction,
written by:

J0 = J0x sin θ + J0z cos θ (A.1)

(iii) the number of turns (N) is large, ensuring a large overlap
of the conducting sheet;

(iv) the current outside the dotted lines rotates until is parallel
to the edges of the foil, and therefore the rotation is
assumed to be linear with distance;

(v) and finally assume that all fields are of the form exp(−iωt)

Let us consider initially the current flowing through the
capacitive elements of the structure. the charge accumulated
at the edges of the foil (i.e. outside the dotted lines) needs to
be considered, which charges the capacitor created from the
overlapping conducting sheet. Therefore, the current across
the width of the foil (figure 4(b)) is given by:

J0 = J0x sin θ + J0z cos θ = dQ

dt
= (N − 1)C

dV

dt
(A.2)

where Q is the charge accumulated outside of the dotted lines,
V is the potential difference between two parallel conducting
plates and C is the capacitance per unit length of each exposed
turn, given by:

C = εdε0(width)

(separation of the plates) × (no. of turns)

= εdε02π R sin θ

(N − 1)d
. (A.3)

Since V is of the form V0 exp(−iωt), then:

∴ J0x sin θ + J0z cos θ = − iωεdε02π R sin θ

d
V . (A.4)

Also, the magnetic field along the Swiss roll is given by:

Hz = H0 + J0x − π R2

a2
J0x (A.5)

where H0 is the external magnetic field, the second term of
the above equation is caused directly by the current flow on
the conducting sheet and the last term is due to depolarizing
fields with sources at the remote ends of the cylinders. If the
cylinders are very long, then the depolarizing field uniformly
spreads over the unit cell.

Furthermore, the emf can be calculated by considering ky-
propagation and Ex -field, ensuring a magnetic field along the
z-axis, which in its turn induces current that flow around the
spiral ring. Using Faraday’s law of induction, emf is given by:

E = −(N − 1)
d

dt
= −(N − 1)π R2μ0

dHz

dt
. (A.6)

E needs to be balanced by the ohmic drop in the potential (V )
due to the capacitance of the structure and conductivity losses
(=2π R(N − 1)ρ Jox ), therefore:

∴ iω(N − 1)π R2μ0 Hz = V + 2π R(N − 1)ρ J0x (A.7)

where ρ is the resistance of the conducting sheet per unit
length.

Finally, the potential difference (V ) across (N − 1)

conducting sheets can be calculated by integrating around a
loop in the y–z plane of the structure, giving:

V =
∫

E dx = (E0 + Ep)(N − 1)2π R tan θ (A.8)

where Ep is the electric field driven by the current per unit
length of the circumference of the coil, which is induced by
charge accumulation. Therefore Ep = [ 2π R

iωεdε0a2 − p]J0z and

E0 + Ep = E0 +
[

2π R

iωεdε0a2
− p

]
J0z = V

(N − 1)2π R tan θ
.

(A.9)
Now, solving (A.4), (A.5), (A.7) and (A.9) with respect to

J0x and J0z:

J0x

= −[AL tan2 θ + B]ω2 H0 − Cω tan θ E0

ω2 D(AL tan2 θ + B) + ω(K L tan2 θ + Cρ) − L tan2 θ

(A.10)

J0z = − Bω2

L tan θ
H0 +

(
B Dω2 + Cρω

L tan θ

)

× [AL tan2 θ + B]ω2H0 + Cω tan θ E0

ω2 D(AL tan2 θ + B) + ω(K L tan2 θ + Cρ) − L tan2 θ

− Cω

L
E0 (A.11)

where

A = 2π2 R3εd(N − 1)

dc2
0

B = εda2

4πc2
0

C = iεdε0a2

2π R
D = 1 − π R2

a2
= 1 − F

K = iεdε04π2 R2ρ(N − 1)

d

(A.12)

L = 1 − Cρω (A.13)

and where F is the filling factor and F = π R2

a2 and ρ is the
resistance of the roll per unit area.

Finally, since the average H -field is given by the sum of
H0 and the depolarizing fields from the coils Have = H0 −
J0x

π R2

a2 and μ = Bave/(μ0 Have) then χH H , χH E are given by:

[χ−1]H H = 1

(1 − F)

ω2 − ω2
0 + i�ω

ω2 − ω2
mp + i�ω/D

(A.14)

[χ−1]H E/ε0 = iR

2L tan θ

(
ω2

mpω

ω2 − ω2
mp + i�ω/D

)
= [κ−1]H E

(A.15)
where

ω2
0 = L tan2 θ

AL tan2 θ + B
= tan2 θ

εd
( 2π2 R3(N−1)

dc2
0

tan2 θ + a2

4πc2
0

) (A.16)

ω2
mp = L tan2 θ

D(AL tan2 θ + B)

= tan2 θ

εd
(
1 − π R2

a2

)( 2π2 R3(N−1)

dc2
0

tan2 θ + a2

4πc2
0

) = ω2
0

1 − F
(A.17)
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are the resonant and the magnetic plasma frequencies
respectively and

� = −i
(K L tan2 θ + Cρ)

AL tan2 θ + B
= − 2ρ

μ0 R
. (A.18)

Similarly for ε, χE E and χE H are given by:

[χ−1]E E = G

(
ω2 − iω�/D

ω2 − ω2
p − iω�/D

)
(A.19)

where G is a constant given by:

G = B

L(A tan2 θ + B)
=

a2

4πc2
0

L( 2π2 R3(N−1)

dc2
0

tan2 θ + a2

4πc2
0
)

= a2d

L(8π3 R3(N − 1) tan2 θ + a2d)
(A.20)

and
ωp = ωmp (A.21)

are the plasma frequency, and finally:

[χ−1]E H/μ0 = − iR

2L tan θ

(
ωω2

mp

ω2 − ω2
mp − i�ω/D

)

= [κ−1]E H . (A.22)
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